Soft Square

Maxwell Levine

Kurt Gödel Research Center

Winter School in Abstract Analysis, 2018

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Section 1

The Objects of Study

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

• If κ is a cardinal and $S \subset \kappa$ a stationary set, then *S* reflects at α if $S \cap \alpha$ is stationary.

Definition

If κ is a cardinal and S ⊂ κ a stationary set, then S reflects at α if S ∩ α is stationary. We assume cf(α) > ω at points of reflection.

Definition

If κ is a cardinal and S ⊂ κ a stationary set, then S reflects at α if S ∩ α is stationary. We assume cf(α) > ω at points of reflection. Reflection holds at κ if every stationary subset of κ reflects at some α < κ.</p>

イロト イヨト イヨト イヨト

Definition

If κ is a cardinal and S ⊂ κ a stationary set, then S reflects at α if S ∩ α is stationary. We assume cf(α) > ω at points of reflection. Reflection holds at κ if every stationary subset of κ reflects at some α < κ.</p>

Examples

If C ⊂ ω₂ is a club and α ∈ lim C ∩ cof(ω₁), then C reflects at α.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

If κ is a cardinal and S ⊂ κ a stationary set, then S reflects at α if S ∩ α is stationary. We assume cf(α) > ω at points of reflection. Reflection holds at κ if every stationary subset of κ reflects at some α < κ.</p>

Examples

 If C ⊂ ω₂ is a club and α ∈ lim C ∩ cof(ω₁), then C reflects at α.

イロン 不同と 不同と 不同と

Kurt Gödel Research Center

If S = ω₂ ∩ cof(ω) then S reflects at any ordinal of uncountable cofinality.

Definition

If κ is a cardinal and S ⊂ κ a stationary set, then S reflects at α if S ∩ α is stationary. We assume cf(α) > ω at points of reflection. Reflection holds at κ if every stationary subset of κ reflects at some α < κ.</p>

Examples

If C ⊂ ω₂ is a club and α ∈ lim C ∩ cof(ω₁), then C reflects at α.

- If S = ω₂ ∩ cof(ω) then S reflects at any ordinal of uncountable cofinality.
- If $S = \omega_2 \cap cof(\omega_1)$ then S does not reflect.

Definition

If κ is a cardinal and S ⊂ κ a stationary set, then S reflects at α if S ∩ α is stationary. We assume cf(α) > ω at points of reflection. Reflection holds at κ if every stationary subset of κ reflects at some α < κ.</p>

Examples

- If C ⊂ ω₂ is a club and α ∈ lim C ∩ cof(ω₁), then C reflects at α.
- If S = ω₂ ∩ cof(ω) then S reflects at any ordinal of uncountable cofinality.
- ▶ If $S = \omega_2 \cap cof(\omega_1)$ then S does not reflect. (Given $\alpha \in \omega_2 \cap cof(\omega_1)$, consider a club $C \subset \alpha$ of order-type ω_1 and observe that lim $C \cap S = \emptyset$.)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ () Kurt Gödel Research Center

Definition

A sequence sequence (S_i : i < λ) of stationary subsets of κ reflect simultaneously if there is some α < κ of uncountable cofinality such that S_i ∩ α is stationary for all i < λ.</p>

Definition

- A sequence sequence (S_i : i < λ) of stationary subsets of κ reflect simultaneously if there is some α < κ of uncountable cofinality such that S_i ∩ α is stationary for all i < λ.</p>
- If κ is a singular cardinal of cofinality μ then simultaneous reflection holds for κ⁺ if for every sequence (S_i : i < μ) of stationary subsets of κ⁺ ∩ cof(μ), there is some α < κ⁺ where the S_i's reflect simultaneously.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

- A sequence sequence (S_i : i < λ) of stationary subsets of κ reflect simultaneously if there is some α < κ of uncountable cofinality such that S_i ∩ α is stationary for all i < λ.</p>
- If κ is a singular cardinal of cofinality μ then simultaneous reflection holds for κ⁺ if for every sequence (S_i : i < μ) of stationary subsets of κ⁺ ∩ cof(μ), there is some α < κ⁺ where the S_i's reflect simultaneously.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kurt Gödel Research Center

Fact

If δ is supercompact and cf $\kappa < \delta < \kappa^+$ then simultaneous stationary reflection holds for κ^+ .

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

•
$$1 \leq |\mathfrak{C}_{\alpha}| \leq \lambda;$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

•
$$1 \leq |\mathfrak{C}_{\alpha}| \leq \lambda;$$

• $\forall C \in \mathfrak{C}_{\alpha}$, C is a club in α such that ot $C \leq \kappa$;

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

- $1 \leq |\mathfrak{C}_{\alpha}| \leq \lambda;$
- $\forall C \in \mathfrak{C}_{\alpha}$, C is a club in α such that ot $C \leq \kappa$;
- $\forall C \in \mathfrak{C}_{\alpha}, \beta \in \lim C \text{ implies } C \cap \beta \in \mathfrak{C}_{\beta}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

•
$$1 \leq |\mathfrak{C}_{\alpha}| \leq \lambda;$$

- $\forall C \in \mathfrak{C}_{\alpha}$, C is a club in α such that ot $C \leq \kappa$;
- $\forall C \in \mathfrak{C}_{\alpha}, \beta \in \lim C \text{ implies } C \cap \beta \in \mathfrak{C}_{\beta}.$

We denote $\Box_{\kappa,1}$ as \Box_{κ} and $\Box_{\kappa,\kappa}$ as \Box_{κ}^* .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

- $1 \leq |\mathfrak{C}_{\alpha}| \leq \lambda;$
- $\forall C \in \mathfrak{C}_{\alpha}$, C is a club in α such that ot $C \leq \kappa$;
- $\forall C \in \mathfrak{C}_{\alpha}, \beta \in \lim C \text{ implies } C \cap \beta \in \mathfrak{C}_{\beta}.$

We denote $\Box_{\kappa,1}$ as \Box_{κ} and $\Box_{\kappa,\kappa}$ as \Box_{κ}^* . The notation $\Box_{\kappa,<\lambda}$ has the obvious meaning.

イロン 不同と 不同と 不同と

Definition (Jensen, Schimmerling)

We say that $\Box_{\kappa,\lambda}$ holds if there is a sequence $\langle \mathfrak{C}_{\alpha} : \alpha \in \lim(\kappa^+) \rangle$ such that for all $\alpha \in \lim \kappa^+$:

•
$$1 \leq |\mathfrak{C}_{\alpha}| \leq \lambda;$$

- $\forall C \in \mathfrak{C}_{\alpha}$, C is a club in α such that ot $C \leq \kappa$;
- $\forall C \in \mathfrak{C}_{\alpha}, \beta \in \lim C \text{ implies } C \cap \beta \in \mathfrak{C}_{\beta}.$

We denote $\Box_{\kappa,1}$ as \Box_{κ} and $\Box_{\kappa,\kappa}$ as \Box_{κ}^* . The notation $\Box_{\kappa,<\lambda}$ has the obvious meaning.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kurt Gödel Research Center

Proposition

Given a $\Box_{\kappa,\lambda}$ -sequence, there is no club $D \subset \kappa^+$ such that $\forall \alpha \in \lim D, \ D \cap \alpha \in \mathfrak{C}_{\alpha}$.

The Objects of Study

Uses of \Box_{κ} and \Box_{κ}^*

6/23

The Objects of Study

6/23

Uses of \square_{κ} and \square_{κ}^*

Facts (Jensen)

• $L \models \Box_{\kappa}$ for all cardinals κ .

Facts (Jensen)

- $L \models \Box_{\kappa}$ for all cardinals κ .
- □_κ implies that every stationary subset S of κ⁺ has a stationary subset T ⊂ S that does not reflect for any α < κ⁺.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Facts (Jensen)

- $L \models \Box_{\kappa}$ for all cardinals κ .
- □_κ implies that every stationary subset S of κ⁺ has a stationary subset T ⊂ S that does not reflect for any α < κ⁺.

Examples

Facts (Jensen)

- $L \models \Box_{\kappa}$ for all cardinals κ .
- □_κ implies that every stationary subset S of κ⁺ has a stationary subset T ⊂ S that does not reflect for any α < κ⁺.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kurt Gödel Research Center

Examples

Maxwell Levine

• GCH + \Box_{κ} implies that there is a κ^+ -Suslin tree.

Facts (Jensen)

- $L \models \Box_{\kappa}$ for all cardinals κ .
- □_κ implies that every stationary subset S of κ⁺ has a stationary subset T ⊂ S that does not reflect for any α < κ⁺.

Examples

- GCH + \Box_{κ} implies that there is a κ^+ -Suslin tree.
- \square_{κ}^{*} is equivalent to existence of a special κ^{+} -Aronszajn tree.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Facts (Jensen)

- $L \models \Box_{\kappa}$ for all cardinals κ .
- □_κ implies that every stationary subset S of κ⁺ has a stationary subset T ⊂ S that does not reflect for any α < κ⁺.

Examples

- GCH + \Box_{κ} implies that there is a κ^+ -Suslin tree.
- \square_{κ}^{*} is equivalent to existence of a special κ^{+} -Aronszajn tree.
- If □^{*}_κ holds then there is a second-countable non-metrizable topological space X such that |X| = κ⁺ and every subspace of X of cardinality < κ⁺ is metrizable.

ヘロン 人間 とくほど くほとう

The Objects of Study

Scales

Definition If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If κ is a singular cardinal and $\langle \kappa_i : i < cf \kappa \rangle$ is a sequence of regular cardinals converging to κ , a *scale* on κ is a sequence of functions $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

ヘロン 人間 とくほど くほとう

3

Kurt Gödel Research Center

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If κ is a singular cardinal and $\langle \kappa_i : i < cf \kappa \rangle$ is a sequence of regular cardinals converging to κ , a *scale* on κ is a sequence of functions $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

• The f_{α} 's are in $\prod_{i < cf \kappa} \kappa_i$;

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If κ is a singular cardinal and $\langle \kappa_i : i < cf \kappa \rangle$ is a sequence of regular cardinals converging to κ , a *scale* on κ is a sequence of functions $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

- The f_{α} 's are in $\prod_{i < cf \kappa} \kappa_i$;
- The f_{α} 's are $<^*$ -increasing;

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If κ is a singular cardinal and $\langle \kappa_i : i < cf \kappa \rangle$ is a sequence of regular cardinals converging to κ , a *scale* on κ is a sequence of functions $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

- The f_{α} 's are in $\prod_{i < cf \kappa} \kappa_i$;
- The f_{α} 's are $<^*$ -increasing;
- ► The sequence is cofinal in the product ∏_{i < cf κ} κ_i with respect to <*.</p>

Definition

If $f, g : \tau \mapsto ON$, then $f <^* g$ if there is a $j < \tau$ such that $i \ge j \implies f(i) < g(i)$.

If κ is a singular cardinal and $\langle \kappa_i : i < cf \kappa \rangle$ is a sequence of regular cardinals converging to κ , a *scale* on κ is a sequence of functions $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

- The f_{α} 's are in $\prod_{i < cf \kappa} \kappa_i$;
- The f_{α} 's are $<^*$ -increasing;
- ► The sequence is cofinal in the product ∏_{i < cf κ} κ_i with respect to <*.</p>

Theorem (Shelah)

If κ is a singular cardinal then there is a product of regular cardinals $\prod_{i < cf \kappa} \kappa_i$ with $\sup_{i < cf \kappa} \kappa_i = \kappa$ that carries a scale.

3

・ロト ・四ト ・ヨト ・ヨト

The Objects of Study

Very Good Scales

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ () Kurt Gödel Research Center

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ at κ (in a product $\prod_{i < cf \kappa} \kappa_i$) is very good if for all $\alpha \in \lim \kappa^+$ such that $cf \alpha > cf \kappa$, there is a $j < cf \kappa$ and a club $C \subset \alpha$ such that $\langle f_{\beta}(i) : \beta \in C \rangle$ is increasing for $i \ge j$.

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ at κ (in a product $\prod_{i < cf \kappa} \kappa_i$) is very good if for all $\alpha \in \lim \kappa^+$ such that $cf \alpha > cf \kappa$, there is a $j < cf \kappa$ and a club $C \subset \alpha$ such that $\langle f_{\beta}(i) : \beta \in C \rangle$ is increasing for $i \ge j$.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at κ then simultaneous stationary reflection fails for κ^+ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ at κ (in a product $\prod_{i < cf \kappa} \kappa_i$) is very good if for all $\alpha \in \lim \kappa^+$ such that $cf \alpha > cf \kappa$, there is a $j < cf \kappa$ and a club $C \subset \alpha$ such that $\langle f_{\beta}(i) : \beta \in C \rangle$ is increasing for $i \ge j$.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at κ then simultaneous stationary reflection fails for κ^+ .

Sketch of Proof.

Kurt Gödel Research Center

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ at κ (in a product $\prod_{i < cf \kappa} \kappa_i$) is very good if for all $\alpha \in \lim \kappa^+$ such that cf $\alpha > cf \kappa$, there is a $j < cf \kappa$ and a club $C \subset \alpha$ such that $\langle f_{\beta}(i) : \beta \in C \rangle$ is increasing for $i \ge j$.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at κ then simultaneous stationary reflection fails for κ^+ .

Sketch of Proof.

If $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a very good scale in a product $\prod_{i < \mathsf{cf} \kappa} \kappa_i$,

・ロト ・日下・ ・日下・ ・日下・

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ at κ (in a product $\prod_{i < cf \kappa} \kappa_i$) is very good if for all $\alpha \in \lim \kappa^+$ such that $cf \alpha > cf \kappa$, there is a $j < cf \kappa$ and a club $C \subset \alpha$ such that $\langle f_{\beta}(i) : \beta \in C \rangle$ is increasing for $i \ge j$.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at κ then simultaneous stationary reflection fails for κ^+ .

Sketch of Proof.

If $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a very good scale in a product $\prod_{i < cf \kappa} \kappa_i$, then let $S_i \subset \kappa^+$ be a stationary set on which $\alpha \mapsto f_{\alpha}(i) < \kappa_i$ is constant.

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ at κ (in a product $\prod_{i < cf \kappa} \kappa_i$) is very good if for all $\alpha \in \lim \kappa^+$ such that $cf \alpha > cf \kappa$, there is a $j < cf \kappa$ and a club $C \subset \alpha$ such that $\langle f_{\beta}(i) : \beta \in C \rangle$ is increasing for $i \ge j$.

Fact (Cummings, Foreman, Magidor)

If there is a very good scale at κ then simultaneous stationary reflection fails for κ^+ .

Sketch of Proof.

If $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a very good scale in a product $\prod_{i < cf \kappa} \kappa_i$, then let $S_i \subset \kappa^+$ be a stationary set on which $\alpha \mapsto f_{\alpha}(i) < \kappa_i$ is constant. The S_i 's do not simultaneously reflect.

Facts (Cummings, Foreman, Magidor)

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*
 - Hence, if $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds then simultaneous reflection at κ^+ fails.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*
 - Hence, if $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds then simultaneous reflection at κ^+ fails.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Assume the existence of countably-many supercompact cardinals.
 - $Con(\Box_{\kappa}^* \land "simultaneous reflection at \kappa^+ holds")$

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*
 - Hence, if $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds then simultaneous reflection at κ^+ fails.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Assume the existence of countably-many supercompact cardinals.
 - Con($\Box^*_{\kappa} \land$ "simultaneous reflection at κ^+ holds")
 - Hence, $Con(\Box_{\kappa}^* \wedge ``\kappa \text{ does not carry a very good scale''})$

Maxwell Levine

Connections

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*
 - Hence, if $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds then simultaneous reflection at κ^+ fails.

Kurt Gödel Research Center

- Assume the existence of countably-many supercompact cardinals.
 - $Con(\Box_{\kappa}^* \land "simultaneous reflection at \kappa^+ holds")$
 - Hence, $Con(\Box_{\kappa}^* \wedge ``\kappa \text{ does not carry a very good scale''})$

Question (Cummings, Foreman, Magidor) Does $\Box_{\kappa,<\kappa}$ imply the existence of a very good scale?

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*
 - Hence, if $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds then simultaneous reflection at κ^+ fails.

Kurt Gödel Research Center

- Assume the existence of countably-many supercompact cardinals.
 - Con($\Box_{\kappa}^* \land$ "simultaneous reflection at κ^+ holds")
 - Hence, $Con(\Box_{\kappa}^* \wedge ``\kappa \text{ does not carry a very good scale''})$

Question (Cummings, Foreman, Magidor)

Does $\Box_{\kappa,<\kappa}$ imply the existence of a very good scale?

Theorem (L.)

Nope!

Facts (Cummings, Foreman, Magidor)

- Fix a singular κ .
 - If $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds, then there is a very good scale on κ .*
 - Hence, if $\lambda < \kappa$ and $\Box_{\kappa,\lambda}$ holds then simultaneous reflection at κ^+ fails.
- Assume the existence of countably-many supercompact cardinals.
 - Con($\Box_{\kappa}^* \land$ "simultaneous reflection at κ^+ holds")
 - Hence, $Con(\Box_{\kappa}^* \wedge ``\kappa \text{ does not carry a very good scale''})$

Question (Cummings, Foreman, Magidor)

Does $\Box_{\kappa,<\kappa}$ imply the existence of a very good scale?

Theorem (L.)

Nope! (Assuming the existence of a supercompact cardinal.)

・ロト ・日下・ ・日下・

Section 2

The Construction

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ (~ Kurt Gödel Research Center

11/23

The Forcing Poset

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

Definition (Jensen)

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

Definition (Jensen)

For $1 < \lambda \leq \kappa^+$, let $\mathbb{S}(\kappa, < \lambda)$ be the poset of all p such that:

• dom $p = \{\beta \leq \alpha : \beta \text{ a limit}\}$ for some $\alpha \in \lim \kappa^+$;

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

Definition (Jensen)

- dom $p = \{\beta \leq \alpha : \beta \text{ a limit}\}$ for some $\alpha \in \lim \kappa^+$;
- ► $\forall \alpha \in \operatorname{dom} p$,

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

Definition (Jensen)

- dom $p = \{\beta \leq \alpha : \beta \text{ a limit} \}$ for some $\alpha \in \lim \kappa^+$;
- ► $\forall \alpha \in \operatorname{dom} p$,
 - $1 \leq |p(\alpha)| < \lambda;$

Kurt Gödel Research Center

The Forcing Poset

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

Definition (Jensen)

- dom $p = \{\beta \leq \alpha : \beta \text{ a limit}\}$ for some $\alpha \in \lim \kappa^+$;
- $\forall \alpha \in \operatorname{\mathsf{dom}} p$,
 - $1 \leq |p(\alpha)| < \lambda;$
 - $p(\alpha)$ is a set of clubs in α of order-type $\leq \kappa$;

Kurt Gödel Research Center

The Forcing Poset

We introduce a poset $\mathbb{S}(\kappa, < \lambda)$, which adds $\Box_{\kappa, < \lambda}$.

Definition (Jensen)

- dom $p = \{\beta \leq \alpha : \beta \text{ a limit}\}$ for some $\alpha \in \lim \kappa^+$;
- $\forall \alpha \in \operatorname{\mathsf{dom}} p$,
 - $1 \leq |p(\alpha)| < \lambda;$
 - $p(\alpha)$ is a set of clubs in α of order-type $\leq \kappa$;
 - $\forall C \in p(\alpha), \forall \beta \in \lim C, C \cap \beta \in p(\beta).$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ ○ Kurt Gödel Research Center

Facts

• $\mathbb{S}(\kappa, < \lambda)$ is $(\kappa + 1)$ -strategically closed

Facts

S(κ, < λ) is (κ + 1)-strategically closed and hence κ⁺-distributive.

Facts

- S(κ, < λ) is (κ + 1)-strategically closed and hence κ⁺-distributive.
- $\blacktriangleright \Vdash_{\mathbb{S}} \square_{\kappa,<\lambda}.$

Facts

S(κ, < λ) is (κ + 1)-strategically closed and hence κ⁺-distributive.

 $\blacktriangleright \Vdash_{\mathbb{S}} \square_{\kappa,<\lambda}.$

...and

Facts

- S(κ, < λ) is (κ + 1)-strategically closed and hence κ⁺-distributive.
- $\blacktriangleright \Vdash_{\mathbb{S}} \square_{\kappa, <\lambda}.$

...and

Fact

 $\mathbb{S}(\kappa, < \lambda)$ adds non-reflecting stationary sets in $\kappa^+ \cap cof(\mu)$ for every $\mu \le \kappa$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

13/23

The Threading Poset

Definition

Let G be $\mathbb{S}(\kappa, < \lambda)$ -generic with $\bigcup G = \langle \mathbb{C}_{\alpha} : \alpha \in \lim \kappa^+ \rangle$, and let δ be an uncountable regular cardinal less than κ .

Definition

Let G be $\mathbb{S}(\kappa, < \lambda)$ -generic with $\bigcup G = \langle \mathbb{C}_{\alpha} : \alpha \in \lim \kappa^+ \rangle$, and let δ be an uncountable regular cardinal less than κ . In V[G] we can define the poset \mathbb{T}_{δ} of closed bounded sets $c \subset \kappa^+$ of order-type less than δ such that $\forall \alpha \in \lim c, c \cap \alpha \in \mathbb{C}_{\alpha}$.

Definition

Let G be $\mathbb{S}(\kappa, < \lambda)$ -generic with $\bigcup G = \langle \mathbb{C}_{\alpha} : \alpha \in \lim \kappa^+ \rangle$, and let δ be an uncountable regular cardinal less than κ . In V[G] we can define the poset \mathbb{T}_{δ} of closed bounded sets $c \subset \kappa^+$ of order-type less than δ such that $\forall \alpha \in \lim c, c \cap \alpha \in \mathbb{C}_{\alpha}$.

Definition

Let $D(\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta})$ be the set of pairs $(p, \check{c}) \in \mathbb{S}(\kappa, < \lambda) * \mathbb{T}_{\delta}$ where $c \in V$ and max dom $p = \max c$.

Definition

Let G be $\mathbb{S}(\kappa, < \lambda)$ -generic with $\bigcup G = \langle \mathbb{C}_{\alpha} : \alpha \in \lim \kappa^+ \rangle$, and let δ be an uncountable regular cardinal less than κ . In V[G] we can define the poset \mathbb{T}_{δ} of closed bounded sets $c \subset \kappa^+$ of order-type less than δ such that $\forall \alpha \in \lim c, c \cap \alpha \in \mathbb{C}_{\alpha}$.

Definition

Let $D(\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta})$ be the set of pairs $(p, \check{c}) \in \mathbb{S}(\kappa, < \lambda) * \mathbb{T}_{\delta}$ where $c \in V$ and max dom $p = \max c$.

Proposition

 $D(\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta})$ is dense in $\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta}$ and is δ -directed closed.

Definition

Let G be $\mathbb{S}(\kappa, < \lambda)$ -generic with $\bigcup G = \langle \mathbb{C}_{\alpha} : \alpha \in \lim \kappa^+ \rangle$, and let δ be an uncountable regular cardinal less than κ . In V[G] we can define the poset \mathbb{T}_{δ} of closed bounded sets $c \subset \kappa^+$ of order-type less than δ such that $\forall \alpha \in \lim c, c \cap \alpha \in \mathbb{C}_{\alpha}$.

Definition

Let $D(\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta})$ be the set of pairs $(p, \check{c}) \in \mathbb{S}(\kappa, < \lambda) * \mathbb{T}_{\delta}$ where $c \in V$ and max dom $p = \max c$.

Proposition

 $D(\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta})$ is dense in $\mathbb{S}(\kappa, < \lambda) * \dot{\mathbb{T}}_{\delta}$ and is δ -directed closed.

Fact

 \mathbb{T}_{δ} destroys some of the stationary sets added by $\mathbb{S}(\kappa, < \lambda)$.

< □ > < 部 > < 書 > < 書 > ■ の < ぐ Kurt Gödel Research Center

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}} "f^{-1}(\xi) \cap cof(\tau)$ is stationary in ν ".

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}} "f^{-1}(\xi) \cap \operatorname{cof}(\tau)$ is stationary in ν ".

Outline.

• Work in V using $D(\mathbb{S} * \dot{\mathbb{T}}_{\delta})$.

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}}$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary in ν ".

Kurt Gödel Research Center

Outline.

- Work in V using $D(\mathbb{S} * \dot{\mathbb{T}}_{\delta})$.
- Let $(p, \emptyset) \Vdash$ " $\dot{f} : \kappa^+ \to \mu$ and $\dot{f} \in V^{\mathbb{S}(\kappa, <\kappa)}$ ".

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}}$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary in ν ".

Outline.

- Work in V using $D(\mathbb{S} * \dot{\mathbb{T}}_{\delta})$.
- Let $(p, \emptyset) \Vdash$ " $\dot{f} : \kappa^+ \to \mu$ and $\dot{f} \in V^{\mathbb{S}(\kappa, <\kappa)}$ ".
- ▶ We want to show that there is some $p^* \le p$ and some $\xi < \mu$ such that $(p^*, \emptyset) \Vdash$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary".

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}}$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary in ν ".

Outline.

- Work in V using $D(\mathbb{S} * \dot{\mathbb{T}}_{\delta})$.
- Let $(p, \emptyset) \Vdash$ " $\dot{f} : \kappa^+ \to \mu$ and $\dot{f} \in V^{\mathbb{S}(\kappa, <\kappa)}$ ".
- ▶ We want to show that there is some $p^* \le p$ and some $\xi < \mu$ such that $(p^*, \emptyset) \Vdash$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary".

Kurt Gödel Research Center

• Otherwise, there are \dot{C}_{ξ} forced to avoid $f^{-1}(\xi) \cap \operatorname{cof}(\tau)$.

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}}$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary in ν ".

Outline.

- Work in V using $D(\mathbb{S} * \dot{\mathbb{T}}_{\delta})$.
- Let $(p, \emptyset) \Vdash$ " $\dot{f} : \kappa^+ \to \mu$ and $\dot{f} \in V^{\mathbb{S}(\kappa, <\kappa)}$ ".
- ▶ We want to show that there is some $p^* \le p$ and some $\xi < \mu$ such that $(p^*, \emptyset) \Vdash$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary".

- Otherwise, there are \dot{C}_{ξ} forced to avoid $f^{-1}(\xi) \cap \operatorname{cof}(\tau)$.
- ► Find p^* , α^* of cofinality τ , and t_*^{ξ} for $\xi < \mu$ such that $(p^*, t_*^{\xi}) \Vdash ``\alpha^* \in \dot{C}_{\xi}$ ".

Lemma

Let G be S-generic and let $\nu = (\kappa^+)^V$. If $f : \kappa^+ \to \mu$ is a partition in V[G] for some $\mu < \kappa$ and $\tau < \delta$ are regular cardinals, then there is some $\xi < \mu$ such that $\Vdash_{\mathbb{T}_{\delta}}$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary in ν ".

Outline.

- Work in V using $D(\mathbb{S} * \dot{\mathbb{T}}_{\delta})$.
- Let $(p, \emptyset) \Vdash$ " $\dot{f} : \kappa^+ \to \mu$ and $\dot{f} \in V^{\mathbb{S}(\kappa, <\kappa)}$ ".
- ▶ We want to show that there is some $p^* \le p$ and some $\xi < \mu$ such that $(p^*, \emptyset) \Vdash$ " $f^{-1}(\xi) \cap cof(\tau)$ is stationary".
- Otherwise, there are \dot{C}_{ξ} forced to avoid $f^{-1}(\xi) \cap \operatorname{cof}(\tau)$.
- ► Find p^* , α^* of cofinality τ , and t_*^{ξ} for $\xi < \mu$ such that $(p^*, t_*^{\xi}) \Vdash ``\alpha^* \in \dot{C}_{\xi}$ ".
- If (q, Ø) ≤ (p^{*}, Ø) and (q, Ø) ⊢ "f(α^{*}) = ξ", then this contradicts the previous point.

Maxwell Levine

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ () Kurt Gödel Research Center

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

• Let δ be "indestructibly supercompact" as above.

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>
- Suppose $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a scale in $V^{\mathbb{S}(\kappa, <\kappa)}$ in $\prod_{i < \mathsf{cf} \ \kappa} \kappa_i$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>
- Suppose $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a scale in $V^{\mathbb{S}(\kappa, <\kappa)}$ in $\prod_{i < cf \kappa} \kappa_i$.
- For all i < cf κ let S_i ⊂ κ⁺ ∩ cof(ω) be such that f_α(i) is constant on S_i and the stationarity of S_i is preserved by T_δ.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>
- Suppose $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a scale in $V^{\mathbb{S}(\kappa, <\kappa)}$ in $\prod_{i < cf \kappa} \kappa_i$.
- For all i < cf κ let S_i ⊂ κ⁺ ∩ cof(ω) be such that f_α(i) is constant on S_i and the stationarity of S_i is preserved by T_δ.

・ロト ・日下・ ・日下・ ・日下・

Kurt Gödel Research Center

• κ is still supercompact in $V^{\mathbb{S}(\kappa,<\kappa)*\mathbb{T}_{\delta}}$,

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>
- Suppose $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a scale in $V^{\mathbb{S}(\kappa, <\kappa)}$ in $\prod_{i < cf \kappa} \kappa_i$.
- For all i < cf κ let S_i ⊂ κ⁺ ∩ cof(ω) be such that f_α(i) is constant on S_i and the stationarity of S_i is preserved by T_δ.

Kurt Gödel Research Center

κ is still supercompact in V^S(κ,<κ)*T_δ, so the S_i's simultaneously reflect at some α of cofinality > cf κ in V^S(κ,<κ)*T_δ,

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>
- Suppose $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a scale in $V^{\mathbb{S}(\kappa, <\kappa)}$ in $\prod_{i < cf \kappa} \kappa_i$.
- For all i < cf κ let S_i ⊂ κ⁺ ∩ cof(ω) be such that f_α(i) is constant on S_i and the stationarity of S_i is preserved by T_δ.

Kurt Gödel Research Center

κ is still supercompact in V^{S(κ,<κ)}*T_δ, so the S_i's simultaneously reflect at some α of cofinality > cf κ in V^{S(κ,<κ)}*T_δ, hence also in V^{S(κ,<κ)}.

Assuming the existence of a supercompact cardinal δ , there is a model in which the supercompactness of δ is preserved by any δ -directed closed forcing.

Outline for the Construction.

- Let δ be "indestructibly supercompact" as above.
- Force with S(κ, < κ) for some κ such that cf κ < δ < κ.</p>
- Suppose $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a scale in $V^{\mathbb{S}(\kappa, <\kappa)}$ in $\prod_{i < cf \kappa} \kappa_i$.
- For all i < cf κ let S_i ⊂ κ⁺ ∩ cof(ω) be such that f_α(i) is constant on S_i and the stationarity of S_i is preserved by T_δ.
- κ is still supercompact in V^{S(κ,<κ)}*T_δ, so the S_i's simultaneously reflect at some α of cofinality > cf κ in V^{S(κ,<κ)}*T_δ, hence also in V^{S(κ,<κ)}.
- Very goodness for this scale fails at the point of reflection α .

...and κ can be \aleph_{ω}

Theorem (L.)

Assuming the existence of a supercompact cardinal there is a model in which $\Box_{\aleph_{\omega},<\aleph_{\omega}}$ holds but there is no very good scale at \aleph_{ω} .

• $\Box_{\kappa,\lambda}$ for $\lambda < \kappa$ implies failure of simultaneous reflection at κ^+ .

- $\Box_{\kappa,\lambda}$ for $\lambda < \kappa$ implies failure of simultaneous reflection at κ^+ .
- \square_{κ}^* does not.

- $\Box_{\kappa,\lambda}$ for $\lambda < \kappa$ implies failure of simultaneous reflection at κ^+ .
- \square_{κ}^* does not.

Theorem (Cummings, Schimmerling)

If κ is a singular strong limit and $\Box_{\kappa,<\kappa}$ holds, then there is a sequence $\langle S_i : i < cf \kappa \rangle$ of stationary subsets of κ^+ and some $\mu < \kappa$ such that if the S_i 's reflect simultaneously at α then $cf \alpha > \mu$.

- $\Box_{\kappa,\lambda}$ for $\lambda < \kappa$ implies failure of simultaneous reflection at κ^+ .
- \square_{κ}^* does not.

Theorem (Cummings, Schimmerling)

If κ is a singular strong limit and $\Box_{\kappa,<\kappa}$ holds, then there is a sequence $\langle S_i : i < \operatorname{cf} \kappa \rangle$ of stationary subsets of κ^+ and some $\mu < \kappa$ such that if the S_i 's reflect simultaneously at α then $\operatorname{cf} \alpha > \mu$.

Question

For singular κ , is $\Box_{\kappa,<\kappa}$ consistent with simultaneous stationary reflection at κ^+ ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- $\Box_{\kappa,\lambda}$ for $\lambda < \kappa$ implies failure of simultaneous reflection at κ^+ .
- \square_{κ}^* does not.

Theorem (Cummings, Schimmerling)

If κ is a singular strong limit and $\Box_{\kappa,<\kappa}$ holds, then there is a sequence $\langle S_i : i < \operatorname{cf} \kappa \rangle$ of stationary subsets of κ^+ and some $\mu < \kappa$ such that if the S_i 's reflect simultaneously at α then $\operatorname{cf} \alpha > \mu$.

Question

For singular κ , is $\Box_{\kappa,<\kappa}$ consistent with simultaneous stationary reflection at κ^+ ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kurt Gödel Research Center

Theorem (L.) Nope!

Section 3

Further Questions

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ (~ Kurt Gödel Research Center

Better Scales

<ロ ト < 団 ト < 直 ト < 亘 ト 三 の Q () Kurt Gödel Research Center

Better Scales

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a *better* scale if for every $\alpha < \kappa^+$ with cf $\alpha >$ cf κ , there is a club $C \subset \alpha$ such that for every $\beta \in \lim C$, there is some j < cf κ such that for all $i \ge j$, $\gamma \in C \cap \beta$ implies $f_{\beta}(i) < f_{\gamma}(i)$.

Better Scales

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a *better* scale if for every $\alpha < \kappa^+$ with cf $\alpha >$ cf κ , there is a club $C \subset \alpha$ such that for every $\beta \in \lim C$, there is some j < cf κ such that for all $i \ge j$, $\gamma \in C \cap \beta$ implies $f_{\beta}(i) < f_{\gamma}(i)$.

Facts

Very good scales are better scales.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Better Scales

Definition

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is a *better* scale if for every $\alpha < \kappa^+$ with cf $\alpha >$ cf κ , there is a club $C \subset \alpha$ such that for every $\beta \in \lim C$, there is some j < cf κ such that for all $i \ge j$, $\gamma \in C \cap \beta$ implies $f_{\beta}(i) < f_{\gamma}(i)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Kurt Gödel Research Center

Facts

- Very good scales are better scales.
- \square_{κ}^{*} implies the existence of a better scale.

Approachability

Definition

If κ is a singular cardinal, then *approachability* holds at κ if there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

Definition

If κ is a singular cardinal, then *approachability* holds at κ if there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

• If $\alpha \in \lim \kappa^+$ then C_{α} is a club in α such that ot $C_{\alpha} = \operatorname{cf} \alpha$;

Definition

If κ is a singular cardinal, then *approachability* holds at κ if there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

• If $\alpha \in \lim \kappa^+$ then C_{α} is a club in α such that ot $C_{\alpha} = \operatorname{cf} \alpha$;

► There is a club
$$D \subset \kappa^+$$
 such that
 $\forall \alpha \in D, \forall \beta < \alpha, \exists \gamma < \alpha, C_\alpha \cap \beta = C_\gamma.$

≣▶ ∢ ≣▶ ≣ ∽ ९.० Kurt Gödel Research Center

Definition

If κ is a singular cardinal, then *approachability* holds at κ if there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

- If $\alpha \in \lim \kappa^+$ then C_{α} is a club in α such that ot $C_{\alpha} = \operatorname{cf} \alpha$;
- ► There is a club $D \subset \kappa^+$ such that $\forall \alpha \in D, \forall \beta < \alpha, \exists \gamma < \alpha, C_\alpha \cap \beta = C_\gamma.$

Fact

If κ is singular then \Box_{κ}^* implies that approachability holds at κ .

イロン 不同と 不同と 不同と

Definition

If κ is a singular cardinal, then *approachability* holds at κ if there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

- If $\alpha \in \lim \kappa^+$ then C_{α} is a club in α such that ot $C_{\alpha} = \operatorname{cf} \alpha$;
- ► There is a club $D \subset \kappa^+$ such that $\forall \alpha \in D, \forall \beta < \alpha, \exists \gamma < \alpha, C_\alpha \cap \beta = C_\gamma.$

Fact

If κ is singular then \Box_{κ}^* implies that approachability holds at κ .

Question

Does approachability at κ imply the existence of a better scale?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Approachability

Definition

If κ is a singular cardinal, then *approachability* holds at κ if there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+ \rangle$ such that:

- If $\alpha \in \lim \kappa^+$ then C_{α} is a club in α such that ot $C_{\alpha} = \operatorname{cf} \alpha$;
- ► There is a club $D \subset \kappa^+$ such that $\forall \alpha \in D, \forall \beta < \alpha, \exists \gamma < \alpha, C_\alpha \cap \beta = C_\gamma.$

Fact

If κ is singular then \Box_{κ}^* implies that approachability holds at κ .

Question

Does approachability at κ imply the existence of a better scale?

Fact (Hayut)

If κ is singular and $(\kappa^+)^{<\kappa^+} = \kappa^+$ then there is a $< \kappa^+$ -strongly strategically closed poset that forces approachability at κ^+ .

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ () Kurt Gödel Research Center

Let κ be a singular strong limit and let $\langle \kappa_i : i < cf \kappa \rangle$ be a sequence of regular cardinals converging to κ .

Let κ be a singular strong limit and let $\langle \kappa_i : i < cf \kappa \rangle$ be a sequence of regular cardinals converging to κ .

Definition

• \mathbb{C}_i is the poset of closed bounded subsets of κ^+ of order-type less than κ_i , where $p \leq_{\mathbb{C}_i} q$ if max $p \geq \max q$ and $p \cap (\max q) = q$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let κ be a singular strong limit and let $\langle \kappa_i : i < cf \kappa \rangle$ be a sequence of regular cardinals converging to κ .

Definition

- \mathbb{C}_i is the poset of closed bounded subsets of κ^+ of order-type less than κ_i , where $p \leq_{\mathbb{C}_i} q$ if max $p \geq \max q$ and $p \cap (\max q) = q$.
- We let C = Π_{i<cf κ} C_i/ ~ where f ~ g if ∃j < cf κ such that i ≥ j implies f(i) = g(i). We use [f] to refer to the equivalence class of f. [f] ≤ [g] refers to eventual domination.

Let κ be a singular strong limit and let $\langle \kappa_i : i < cf \kappa \rangle$ be a sequence of regular cardinals converging to κ .

Definition

- \mathbb{C}_i is the poset of closed bounded subsets of κ^+ of order-type less than κ_i , where $p \leq_{\mathbb{C}_i} q$ if max $p \geq \max q$ and $p \cap (\max q) = q$.
- We let C = ∏_{i < cf κ} C_i/ ~ where f ~ g if ∃j < cf κ such that i ≥ j implies f(i) = g(i). We use [f] to refer to the equivalence class of f. [f] ≤ [g] refers to eventual domination.

Facts (L.)

• \mathbb{C} is $(\kappa + 1)$ -strategically closed and hence κ^+ -distributive.

Let κ be a singular strong limit and let $\langle \kappa_i : i < cf \kappa \rangle$ be a sequence of regular cardinals converging to κ .

Definition

- \mathbb{C}_i is the poset of closed bounded subsets of κ^+ of order-type less than κ_i , where $p \leq_{\mathbb{C}_i} q$ if max $p \geq \max q$ and $p \cap (\max q) = q$.
- We let C = Π_{i<cf κ} C_i/ ~ where f ~ g if ∃j < cf κ such that i ≥ j implies f(i) = g(i). We use [f] to refer to the equivalence class of f. [f] ≤ [g] refers to eventual domination.

Facts (L.)

C is (κ + 1)-strategically closed and hence κ⁺-distributive.
⊢_C □_κ^{*}.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ へ () Kurt Gödel Research Center

Theorem (L.)

C adds a non-reflecting stationary subset of κ⁺ ∩ cof(τ) where τ = cf κ.

Theorem (L.)

- \mathbb{C} adds a non-reflecting stationary subset of $\kappa^+ \cap \operatorname{cof}(\tau)$ where $\tau = \operatorname{cf} \kappa$.
- If cf κ > ω then it is consistent that C does not add non-reflecting stationary subsets in κ⁺ ∩ cof(τ) for τ < cf κ.

・ロト ・日ト ・ヨト ・ヨト

Theorem (L.)

- \mathbb{C} adds a non-reflecting stationary subset of $\kappa^+ \cap \operatorname{cof}(\tau)$ where $\tau = \operatorname{cf} \kappa$.
- If cf κ > ω then it is consistent that C does not add non-reflecting stationary subsets in κ⁺ ∩ cof(τ) for τ < cf κ. (Assuming the existence of a supercompact cardinal.)

Theorem (L.)

- \mathbb{C} adds a non-reflecting stationary subset of $\kappa^+ \cap \operatorname{cof}(\tau)$ where $\tau = \operatorname{cf} \kappa$.
- If cf κ > ω then it is consistent that C does not add non-reflecting stationary subsets in κ⁺ ∩ cof(τ) for τ < cf κ. (Assuming the existence of a supercompact cardinal.)

Question

Does \mathbb{C} add non-reflecting stationary subsets of $\kappa^+ \cap cof(\tau)$ for $\tau > cf \kappa$?

Further Questions

23/23

Děkuji!

